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Abstract— In this paper, optimum weight update scheme for 
improved linearity and asymmetry of channel conductance 
potentiation and depression in a Germanium ferroelectric (FE) 
nanowire FET (NWFET) was experimentally demonstrated 
and simulated for the first time. It was found that -5 V, 320 
pulses and +5 V, 256 pulses both with 50 ns pulse width were 
the optimum pulsing conditions for potentiation and 
depression process, respectively. With the optimized scheme, 
non-linearity for potentiation and depression were extracted 
to be = 1.22 and = -1.75, respectively resulting in 
asymmetry (| |) of 2.97 based on models embedded in 
MLP simulator and NeuroSim [1]. Gmax/Gmin ratio (few 
hundreds) and number of conductance states (> 256) are both 
very large. 9 alternating consecutive conductance updates 
(potentiation followed by depression) were executed to 
observe variability in conductance profiles. Multilayer 
perceptron neural network was simulated over 1 million 
MNIST images with extracted experimental parameters 
which yielded in online learning accuracy of ~ 88 %. 

I. INTRODUCTION 
Due to introduction of processors with higher performance 

and faster parallel computing capabilities, brain-inspired 
synaptic device networks caught much attention for various 
real-life applications. Specifically, e-NVM (emerging non-
volatile memory) such as resistive [2], [3], phase change [4] or 
ferroelectric [5]–[7] devices are studied towards non-von 
Neumann architectures. Specifically, ferroelectric (FE) 
devices, mostly with Hf0.5Zr0.5O2 (HZO) due to its high 
compatibility with CMOS platform, are being studied actively 
related with negative capacitance (NC) devices [8], [9]. 
Studies on FE switching speed follow this trend [10], [11]. 
Partial polarization of a FE device makes it possible to serve 
as a synaptic device when optimized properly [5]. Motivation 
for using e-NVM for online learning in deep neural network 
(DNN) is related to their ability to retain the weight data and 
to locally process the input via multiplication of weights in the 
form of conductance. Subsequent addition of weighted 
currents are read with peripheral circuitry [1] and the 
processed data is used as the input of the following layer after 
non-linearization. Sequential processing of data from one 
layer to the following layer can be noted as forward 
propagation as shown in Fig. 1. During online training process, 
back propagation is used to update the less-accurate synaptic 
devices’ weights. Iterative cycles of forward and back 
propagation increase the accuracy as it undergoes training 
epochs. For efficient and adaptive operation of the network, 
linear and symmetrical conductance profile is highly preferred. 
Fig. 2 depicts various possible non-ideal effects related to e-
NVM’s programming process including nonlinearity, 
asymmetry, stochasticity and large variability in conductance 
values [4]. Although it was reported that the e-NVM-based 
neural networks are relatively robust to conductance’s 
stochasticity and variability [4], nonlinear and asymmetric 

profiles significantly limit the accuracy. To overcome such 
detrimental influence, different pulsing schemes were 
proposed as depicted in Fig. 3 [5], [7]. However, if pulses are 
not identical throughout the programming process, an 
additional step of accessing the weight value is needed every 
time an update takes place to find the appropriate pulse at that 
specific level compromising the efficiency. In this paper, we 
demonstrate Germanium FE NWFET as a synaptic device 
with high number of conductance states and Gmax/Gmin. 
Identical conductance update pulsing schemes were optimized 
for improved linearity and asymmetry. Ge FE NWFETs can 
then be configured into pseudo-crossbar array as shown in Fig. 
4 for practical implementation towards the DNN.  

II. EXPERIMENTS 
Germanium-on-insulator (GeOI) wafer with 100 nm of Ge 

layer on top of SiO2 (400 nm) and Si handling wafer was used 
for the fabrication of the Ge FE NWFETs. Typical wafer 
cleaning and mesa isolation was processed, followed by ion 
implantation. Fin structure was first defined with SF6-based 
dry etching and nanowire was released by partial etching of 
the underlying SiO2. 3-step ALD deposition was conducted 
starting with 1 nm of Al2O3 and subsequent post-oxidation to 
form thin GeOx (~1 nm) under the Al2O3 for better interface 
quality. 10 nm of HZO and additional 1 nm of Al2O3 capping 
layer were deposited. Then 500 oC post deposition annealing 
(PDA) was performed to enhance the ferroelectricity within 
the HZO stack. Source and drain were formed using recessed 
S/D technique [12]. Ohmic annealing and gate, source and 
drain metallization was finished in the last step. Fig. 5 presents 
more details related to the fabrication steps. Fig. 5 (a) and (b) 
visualize the 3D structure of the device and false-colored SEM 
images are shown in Fig. 6 (a)-(c). Multiple parallel nanowires 
form a single device and a typical transfer curve of such 
device can be seen in Fig. 7. Large negative hysteresis (-4 V) 
is observed showing ferroelectric switching. Fatigue 
measurement on our ALD HZO was done with 109 PUND 
(Positive Up, Negative Down) pulses to verify our HZO’s 
reliability (Fig. 8). Details on our HZO film and devices’ 
operation are elaborated in our previous reports [8], [13], [14]. 

III. RESULTS AND DISCUSSION 
As seen in Fig. 4, FeFETs can be configured into a 

pseudo-crossbar design. When a row is selected, and 
subsequent potentiation and depression pulses are fed into the 
gate of a FeFET, already-saved conductance value can be 
newly programmed through partial polarization switching (Fig. 
9). Input data fed (Fig. 4, purple line) into the FeFET’s 
channel results in weighted current and can be read externally. 
To optimize the programming pulses, measurement set-ups 
were prepared as configured in Fig. 10. Fig. 11 is the real-time 
monitored potentiation process after applying a single -8.75 V 
pulse (75 ns) to the gate of FeFET. Current was measured 
using an oscilloscope through current amplifier (Fig. 10 (a)). 
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Then, pulse voltage optimization was done with fixed pulse 
widths. As seen in Fig. 12, with a fixed pulse width (1 μs), 
increasing the potentiation voltage from -1 V to -4.5 V reduces 
the number of pulses needed to reach the maximum 
conductance (Gmax, ~ 80 μS). Fixing the pulse level at -4.5 V, 
pulse widths were swept from 100 ns to 1 μs and similar trend 
in conductance profile could be observed (Fig. 13) where 
longer pulses reduce the number of pulses to maximize the 
conductance. Same procedure was executed for depression 
pulses (Fig. 14). It could be clearly seen from Fig. 15 that if 
the pulse conditions (either voltage or pulse width) are not 
properly optimized, it gives highly non-linear and asymmetric 
conductance profiles. Non-linearity for potentiation and 
depression were extracted to be = 5.72 and = -9, 
respectively yielding asymmetry (| |) of 14.72. These 
values were extracted through curve-fitting model embedded 
in MLP (Multilayer perceptron) simulator (+NeuroSim) [1] 
for fair benchmarking among reported HZO-based FeFET 
synapse devices.  

Freezing of a device (stuck-on conductance) were 
occasionally observed when excessively strong pulses 
(significantly larger number of pulses, long pulse widths, or 
larger pulse voltages) were delivered similar to the reported 
PCRAM-based study [4] limiting subsequent conductance 
programming. The report concludes that the contribution of 
these non-ideal circumstances doesn’t compromise the 
accuracy too much. Restoration was possible via initialization 
(#1 in Fig. 9) but using intermediate conductance values in the 
first place rather than exploiting the whole maximum 
conductance range would be helpful in preventing the devices 
from becoming nonresponsive in the cost of reduced Gmax and 
number of states. 

Considering various factors, pulse width was reduced to 50 
ns as seen in Fig. 16 for better  and lower asymmetry. 
Pulse period was 500 μs and conductance sampling was done 
50 μs after each pulse. Conductance values were sampled at 
single point (VG = 0 V) instead of sweeping VG to minimize 
the unwanted effect of measurement VG on the programmed 
polarization state. It was found that when our Ge FE pNWFET 
(L= 105 nm, W= 32 nm, H= 26 nm) was subjected to 50 ns, VG 
= 5 V (- for potentiation, + for depression), it resulted in 
significantly improved linearity (Fig. 17) of = 1.22 and = 

-1.75 (Asymmetry = | | = 2.97). Respective pulse 
numbers were chosen to acquire symmetric operation between 
potentiation (320 pulses) and depression (256 pulses) resulting 
in effective control of the conductance without introducing 
non-responsive devices. Smaller pulse number for depression 
implies that the polarization switching is more sensitive to 
depression (+5 V) than potentiation (-5 V). To investigate the 
variability of the optimized pulse scheme, 9 consecutive 
cycles of continuously alternating potentiation (-5 V, 50 ns, 
320 cycles) and depression (+5 V, 50 ns, 256 cycles) were 
executed. Fig. 18 (a) is the accumulated conductance profiles 
and Fig. 18 (b) shows the overlapped profiles. It could be 
observed that this pulse scheme was effective repetitively 
yielding reliable conductance profiles without serious non-
ideal curves. Since number of conductance states were high in 
our case (320 for potentiation and 256 for depression), 
multiple pulses could be tied in the form of a pulse train to 
reduce the number of states for applications that require lower 

number of states. If 10 pulses (-5 V, 50 ns) are delivered as a 
pulse train, it will result in 320/10 = 32 states (5 bits) with 10 
times larger G step. The Gmax/Gmin ratio is also considered as 
an important parameter in training simulation. Low ratio 
causes degradation in training accuracy which makes higher 
ratio more preferable [1], [3]. Our devices show excellent ratio 
in the range of hundreds because of low Gmin < 1 μS and high 
Gmax ~ 200 μS (Fig. 18). 

Fig. 19 shows the improvement in non-linearity due to 
transition from non-optimized (Fig. 15) to optimized (Fig. 18) 
scheme. Both and  approach the desired targeted values 
of +1 and -1 (ideally both 0) [1]. Fig. 20 compares the 
asymmetry and training accuracy of online learning through 
multilayer perceptron (MLP) neural network architecture (400 
input, 100 hidden, 10 output neurons)  [1] before and after 
conductance profile optimization. 1 million hand written digit 
images (MNIST, Modified National Institute of Standards and 
Technology, cropped 20 20 pixels) were trained for 125 
epochs of training. With dramatic improvement in linearity 
(and thus asymmetry), high accuracy of ~ 88 % could be 
achieved. It could be further improved if various parameters in 
the simulator such as learning rates between layers, number of 
synapses, number of hidden layers are optimized more 
precisely. Fig. 21 summarizes device performance metrics of 
reported HZO-based FeFET synaptic devices. All three studies 
use HZO as main FE dielectric layer and results using 
identical pulses are shown for comparison. 

IV. CONCLUSION 
In this paper, we have reported the first experimental and 

simulation demonstration of Ge FE NWFET as a synaptic 
device for online learning in a neural network with optimized 
pulse schemes. Separate identical pulsing conditions for 
potentiation (-5V, 50 ns, 320 cycle) and depression (+5V, 50 ns, 
256 cycle) were found respectively which gave significantly 
improved linearity and symmetry in conductance profiles. 
These conditions were effective in preventing devices from 
becoming non-responsive since the combination of pulse 
voltage, pulse width and number of pulses was optimized to 
prevent the freezing. As a result, improved linearity ( / = 
5.72/-9 → 1.22/-1.75) and asymmetry (14.72 → 2.97) in 
conductance profiles could be observed. Learning accuracy 
after training 1 million MNIST images over 125 epochs gave 
~ 88 %. It can be concluded that precise optimization of 
pulsing conditions can affect the conductance update profiles 
significantly.  
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Fig. 3. Various possible pulses for potentiation 
and depression. (a) Identical pulses, (b) 
different pulse levels and (c) pulse widths. 
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Fig. 2. Non-ideal effects such as variation 
in Gmax,min, stochasticity, non-linear and 
asymmetric G profile are shown. 
 

Fig. 1. Basic operation diagram of 
online training scheme with back 
propagation for weight update. 

 
Fig. 6. SEM images of fabricated Germanium nanowire structures (a) viewed from the 
side before ALD ferroelectric oxide deposition and (b) top after completion of all 
fabrication processes. Nanowires connect source and drain regions and air-gap exists 
below the nanowire. (c) Zoom-in image of (b) shows multiple nanowires in parallel. 

 Wafer cleaning (GeOI, Ge (100nm)/SiO2/Si) 
 Mesa isolation definition (Dry etching) 
 P-type ion implantation 
 Fin/NW definition (Dry etching) 
 Gate oxide deposition (ALD) 

a) Al2O3 1 nm (250°C) 
b) Post-oxidation (500°C, O2, 30s) 
c) HZO 10 nm (250°C) 
d) Al2O3 Capping, 1 nm (250°C) 

 HZO PDA (RTA, N2, 500°C, 60s) 
 Source/Drain recess (BCl3 Dry etching) 
 S/D Ni contact deposition  
 Ohmic anneal (RTA, 250°C, 30s) 
 Gate metal, S/D pad definition (Ni) 

 

Fig. 7. ID-VG curve of Ge FE pNWFET 
(L= 105 nm, W= 50 nm, H= 26 nm) shows a 
clear negative ferroelectric hysteresis of 
approximately -5 V and negligible IG. 

 
  

Fig. 4. Pseudo-crossbar scheme showing 
weight update (blue) and data processing 
(purple green) in a row selected by WL. 

Fig. 8. Fatigue measurement on ALD 
Ferroelectric HZO capacitor was 
done with PUND pulses. 
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Fig. 5. Key process steps for fabrication of a Ge FE NWFET neuromorphic device. 
(a) 3D Structure of the device and (b) its cross-sectional view of nanowires are 
illustrated. 
 

Fig. 10. (a) Set-up used for real-time 
conductance update during potentiation. (b) 
Set-up for conductance sampling between 
potentiation and depression pulses. 
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Fig. 9. With +VG initializing pulse, FE 
pFET follows the forward polarization 
curve but a large -VG switches the 
polarization and raises the ID. 
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 This Work [5] [6] 
Device Ge FE 

Nanowire pFET 
Si FE  

Planar nFET 
Si FE 

Junctionless nFinFET 
Gate Stack 

(Thickness, nm) 
GeOX (~1) 

+ HZO (10) + Al2O3 (2) HZO (10) + SiO2 (0.8) HZO (8.5) + SiO2 (1.5) 

Device Dimension L = 105 nm, W = 32 nm L = 600 nm, W = 20,000 nm L = 120 nm, W = 50 nm 
# States (Pot./Dep.) 320 / 256 20 32 > 32 

Pot. Pulse (Type) (Identical) 
50 ns, 5 V 

(Identical) 
75 ns, 3.7 V 

(Varying) 
75 ns, 2.85 ~ 4.45 V 

(Identical) 
100 μs, 3.7 V 

Dep. Pulse (Type) (Identical) 
50 ns, -5 V 

(Identical) 
75 ns, -3.2 V 

(Varying) 
75 ns, -2.1 ~ -3.8 V 

(Identical) 
100 μs, -3.2 V 

Non-linearity ( / ) 1.22 / -1.75 5.54 / -8.08 1.75 / 1.46 1.58 / - 7.57 
Asymmetry (| - |) 2.97 13.62 0.29 9.15 

Gmax/Gmin Few hundreds ~ 8 45 4.98 
Accuracy  

(# of trained images) 
~ 88 %  

(1 Million)  N/A ~ 90 %  
(1 Million) 

~ 80 %  
(3 Million) 

 

Fig. 11. Real-time monitoring 
of conductance potentiation 
with set up in Fig. 11 (a).  
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Fig. 14. Pulse voltage dependent 
depression profile with fixed pulse 
width of 1 μs showing similar trend 
as Fig. 12. 

Fig. 17. The best nonlinearity coefficient 
from pulse scheme in Fig. 16 using reported 
model [1]. Only 10 % of pulses are 
displayed for better visualization 

Fig. 19. Non-linearity comparison 
extracted from both optimized and 
not optimized pulses.  
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Fig. 12. Potentiation profile with 
fixed pulse width (1 μs). Higher 
voltage increases potentiation rate. 
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Fig. 16. (a) Optimized potentiation (-5 V, 50 
ns) and depression (+5 V, 50 ns) pulses for 
the fabricated Ge FE pNWFET (L = 105 nm, W 

= 32 nm, H = 26 nm) (b) VD is fixed at -50 mV. 

Fig. 20. Improvement in training 
accuracy after optimization. Total 
of 1 million cropped 20 20-pixel 
MNIST images were trained using 
MLP+NeuroSim V2.0 [1]. 
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Fig. 13. Pulse width dependent 
potentiation profile with fixed 
VG= -4.5 V. Longer pulses 
increase the potentiation rate. 

Fig. 18. (a) 9 cycles of consecutive alternating potentiation (-5 V, 50 ns, 320 pulses) and 
depression (+5 V, 50 ns, 256 pulses) give highly repetitive conductance profiles. (b) Overlapped 
curves from (a) show some conductance variation over multiple programming cycles. 

Fig. 15. Without optimized pulse 
conditions ( 4.5 V, 1 μs), it results 
in highly non-linear and asymmetric 
profile  

Fig. 21. Benchmark of various reported FeFET-based synapse devices for online learning. Lower 
non-linearity, asymmetry coefficients and higher on/off ratio are preferred. Cycle to cycle variation 
during our potentiation and depression process is < 1 %. Accuracy can be further increased with 
better optimized simulation conditions including various learning rates and circuit parameters. 
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